PhD thesis
Resource and climate footprint assessment of constructions from conventional approach to building information modelling

Publication Details
Sameer, H.
Kassel University Press
Publication year:


The construction industry is one of the leading industries that are mainly responsible for the  environmental  impact  of  the  economy.  Implementing  ambitious  climate  protection  and resource efficiency is a prime environmental policy issue and becoming a top priority of many worldwide policies. As extraction and production of natural resources, also to meet the high demand of the construction industry, account for a significant amount of global  Greenhouse  Gas  (GHG)  emissions,  integration  of  climate  with  resource  use  policies is highly needed. Useful methods, indicators, and tools should be promoted to exploit synergies and to identify and minimize possible trade-offs. In this research, the tendency of material footprint assessment within sustainability assessment  schemes  for  buildings  is  studied.  Needs  for  quantifying  material  footprint  within   life   cycle   assessment   (LCA)   boundaries   of   buildings   are   identified.   A   methodology of assessing material footprint in relation to climate footprint is developed, using available life cycle databases for construction materials. The material footprint is measured in terms of Raw Material Input (RMI) and Total Material Requirement (TMR), RMI  refers  to  the  cumulative  used  raw  materials  and  TMR  accounts  for  all  primary  materials  extracted  from  nature,  including  both  used  and  unused  materials.  The  water  footprint  includes  quantitative  water  use  (WSFquan),  regionally  weighted  using  the  Available Water Remaining (AWARE) method. The climate footprint is quantified by the  indicator  Global  Warming  Impact  (GWI)  using  Global  Warming  Potential  (GWP)  values  from  the  fifth  assessment  report  of  the  Intergovernmental  Panel  on  Climate  Change (IPCC).The  methodology  approach  is  tested  for  different  building  elements  such  as  foundations and exterior walls. In terms of the whole building, the footprint is calculated per  square  meter  of  the  usable  floor  area.  The  methodology  is  also  applied  for  the  assessment  of  different  concrete  production  technologies  such  as  the  Ultra-High-Performance  Concrete  (UHPC)  in  comparison  with  conventional  concrete.  Results  are  provided for a bridge construction design. Sensitivity analyses are conducted to measure the potential saving of natural resources and GHG emissions. The approach is described and tested for different life cycle phases of a construction project according to EN 15804 and EN 15978. Building  Information  Modelling  (BIM)  provides  a  collaboration  platform  betweendifferent building design parties to facilitate the decision-making process. Recently, BIM has been widely used to increase environmental performance during the design phase of the building. To enhance the BIM environment with the ability of resource and climate footprints assessment, the novel application Sustainable Resource Application (SURAP) is  developed.  The  application  has  integrated  the  developed  methodology  in  BIM.  By  using SURAP, architects, construction planners, and engineers can quantify resource and climate footprints per square meter of usable floor area of the building. Results can be visualized  to  identify  which  part  of  the  building  is  associated  with  the  highest  environmental impact. The output results of the SURAP are validated using conventional and BIM-based LCA tools.

Last updated on 2021-04-08 at 18:02